Interpretation of synchrotron radiation circular dichroism spectra of anionic, cationic, and zwitterionic dialanine forms.
نویسندگان
چکیده
Electronic absorption and synchrotron radiation circular dichroism (SRCD) spectra of the anionic, cationic, and zwitterionic forms of L-alanyl-L-alanine (AA) in aqueous solutions were measured and interpreted by molecular dynamics (MD) and ab initio computations. Time-dependent density functional theory (TD DFT) was applied to predict the electronic excited states. The modeling enabled the assessment of the role of molecular conformation, charge, and interaction with the polar environment in the formation of the spectral shapes. Particularly, inclusion of explicit solvent molecules in the computations appeared to be imperative because of the participation of water orbitals in the amide electronic structure. Implicit dielectric continuum solvent models gave inferior results for clusters, especially at low-energy transitions. Because of the dispersion of transition energies, tens of water/AA clusters had to be averaged in order to obtain reasonable spectral shapes with a more realistic inhomogeneous broadening. The modeling explained most of the observed differences, as the anionic and zwitterionic SRCD spectra were similar and significantly different from the cationic spectrum. The greatest deviation between the experimental and theoretical curves observed for the lowest-energy negative anion signal can be explained by the limited precision of the TD DFT method, but also by the complex dynamics of the amine group. The results also indicate that differences in the experimental spectral shapes do not directly correlate with the peptide main-chain conformation. Future peptide and protein conformational studies based on circular dichroic spectroscopy can be reliable only if such effects of molecular dynamics, solvent structure, and polar solvent-solute interactions are taken into account.
منابع مشابه
DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra
A user-friendly website for the analysis of protein secondary structures from Circular Dichroism (CD) and Synchrotron Radiation Circular Dichroism (SRCD) spectra has been created.
متن کاملModulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function.
Melittin is a cationic hemolytic peptide isolated from the European honey bee, Apis mellifera. Since the association of the peptide in the membrane is linked with its physiological effects, a detailed understanding of the interaction of melittin with membranes is crucial. We have investigated the interaction of melittin with membranes of varying surface charge in the context of recent studies w...
متن کاملSynchrotron radiation circular dichroism and conventional circular dichroism spectroscopy: A comparison
Conventional circular dichroism (cCD) spectroscopy is a valuable tool for secondary structure analyses of proteins. In recent years, it has been possible to use synchrotrons as light sources for CD, with the technique being known as Synchrotron Radiation Circular Dichroism (SRCD). In this study, the spectra of two proteins, the primarily helical myoglobin and the primarily beta-sheet concanaval...
متن کاملCalibration and Standardisation of Synchrotron Radiation Circular Dichroism and Conventional Circular Dichroism Spectrophotometers
Synchrotron radiation circular dichroism (SRCD) is an emerging technique in structural biology with particular value in protein secondary structure analyses since it permits the collection of data down to much lower wavelengths than conventional circular dichroism (cCD) instruments. Reference database spectra collected on different SRCD instruments in the future as well as current reference dat...
متن کاملOvercoming protein denaturation caused by irradiation in a high-flux synchrotron radiation circular dichroism beamline.
It has been established that the new circular dichroism beamline CD12 has sufficiently high flux at low wavelengths to cause apparent irradiation problems with protein samples while their synchrotron radiation circular dichroism (SRCD) spectra are being collected. The cause of this effect has been extensively investigated and is reported in an accompanying paper [Wien et al. (2005). J. Synchrot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 111 14 شماره
صفحات -
تاریخ انتشار 2007